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INTRODUCTION

The computation of turbomachinery flows, particularly in the multistage
coafigur tion, is baseéd on a complex set of approximations and
interaction with empirical data. It combines an approximate space
description with a representation of the shear stresses, which reduces
to their effect on the stagnation pressure 1losses, or entropy
production, provided by empirical information.

In this report a rigorous derivation of these components is
rresented.

Fart 1 contains a systematic derivation of the conservation laws for the
two quasi three dimensional Space approximations, nameliy the
streamsurface approach, initially introduced by <Z.H.Wu, and the
averaging procedure.

Part 2 describes the formulation of the Through-flow models ard their
coupling with the blade to blade flows, including a discussion of their
numerical discretization. In particular, the derivation of the
streamline curvature method is presented in details and its
implementation can be compared with the streamfunction approach. In
both cases the 1limitations of the methods, in presence of supersonic
flows, are discussed and their origin are pointed out.

This work has been performed while the author was holding the HNAVAIR
Research Chair at the Naval Postgraduate School. The stimulating
atmosphere, and discussions with Professor R. Shreeve have greatly
contributed to the realisation of this work.



PART 1 : THE SPATIAL LEVEL OF APPROXIMATION

The most general representation of a fluid flow is obviously the fully
threée-dimensional one, since it corresponds to the dimensionality of the
real world. But needless to say, this representation puts in general
very strong requirements on computer storage and computational times
and, although three-dimensional computations are to be applied in
increasing measure 1in the coming years, many physical situations can
still be described with reasonable accuracy by an approach with a
reduced number of space variables.

Many configurations are indeed developed which, although not strictly
two-dimensional in nature, can be considered as not '"strongly"
three-dimensional in the sense that one can expect that the variation,
or the magnitude, of one velocity component is less important than the
variations of the other two. A typical example of such a situation is
the wing of a modern airplane with varying chord length and spanwise
varying profile shape. Within a certain approximation which excludes in
particular the wing=body junction and the tip regions, the flow along
the wing could be approached two-dimensionally. Alternatively, a
cylindrical airfoil under a sweep angle with respect to the upstream
flow will present limited three-dimensional effects for relatively small
values of the sweep angle.

Axisymmetric configurations are similarly suitable for descriptions with
a reduced number of space variables.

It is clear that, neither for the spatial level of approximation nor for
the other 1levels, 1is it possible to put forward general conditions of
validity for a given set of assumptions. Depending on the initial flow
conditions, the geometrical configurations and the required level of
accuracy for any system of approximations, one will have to check the
calculated flow behaviour against either experimental data or results
from computations at a higher level of approximation.

Hence, a fully three-dimensional computation will allow to check by
comparison, the limits of validity of a two~dimensional approach, in the
same way as experimental data or a reliable viscous calculation will
allow to ascertain the limits of validity of an inviscid approach.

For example, it is well known that for flow incidences along an airfoil
lower than certain values, the boundary layers will not separate and an
inviscid two-dimensional approach might be of sufficient validity to
predict the 1ift coefficients with acceptable accuracy; while for
higher incidences the occurence of large separated regions might require
a three-dimensional viscous computation 1in order to maintain the same
level of accuracy.

In the field of internal flows, such as channels and turbomachinery
passages, three-dimensional effects are induced by the presence of
material walls and the geometrical configuration will lead to
three-dimensional flow components, even with a two-dimensional inlet
flow. ‘



In order to treat these situations an intermediate description between
the fully three-dimensional and the two-dimensional can be introduced.
This = intermediate level of approximation which can be called
Quasi-Three-Dimensional, approximates the flow as a succession of
interacting families of two-dimensional flows along intersecting

surfaces. Appropriate families of surfaces are defined, which can be
treated as streamsurfaces, along which a two-dimensional velocity field
projection is determined. Obviously a fully three-dimensional

time-dependent flow field will require three families of intersecting
surfaces in order to be determined completely. This corresponds to
requiring three inter-dependent scalar functions of three coordinates in
order to describe the three component velocity field restricted by the
continuity equation. But only two families of surfaces are required for
steady flows, see Section 2-8. Such a representation is equivalent to a
complete three-dimensional description and no spatial approximations are
involved. The Quasi-Three-Dimensional approximation comes in when the
number of surfaces is reduced; that is, when it 1is considered that a
valid description of the flow behaviour is obtained by neglecting the
flow contributions along either certain families of surfaces or along
certain members of a given family of surfaces.

Actually, one could visualize these families of surfaces as generating a
system of coordinate surfaces, such as the £' =g, €2 =n, £ =
families of figure 1.1.1. The projections of the velocity vectors ~in
these surfaces are computed on a two-dimensional basis, and the Quasi-3D
approximation is contained in the assumption that either the projection
of the velocity field in one set of surfaces is independent of the third
coordinate, with the consequence that the flow in one of the members of
the family is representative of all of them, (for instance, the flow in
a-(g£,z) surface being independent of n), or eventually that the velocity
field in one family is of negligible magnitude with respect to the

others, (for instance the velocity projection in the (g,n) surfaces).

An alternative to the stream- or pseudo stream-surface method for
obtaining a quasi-three-dimensional approximation is offered by the
Averaging Method. This approach consists 1in averaging out the
conservation equations with respect to a chosen coordinate, for instance
the £° direction, obtaining equations with the remaining coordinates as
independent variables.

Two-dimensional equations are obtained in this way, representative of
the average flow with respect to the £® coordinate, but containing
geometrical terms function of the averaged space direction. Clearly,
limits of integration have to be defined and hence this procedure is
best suited for internal flows with streamwise varying cross-sections.

This procedure can also be extended to an averaging over a
two-dimensional region such as the cross-section of the channel, leading
to a quasi-two dimensional flow description in the direction
perpendicular to this section involving terms which are functions of the
varying cross-section.

Although both approaches lead to equivalent representations in Quasi=3D
approximations, with differences only in the way the interaction between
the various families of surfaces are defined, the streamsurface approach
can be used to define a description of a fully three-dimensional flow




whereas the averaging procedure can not.

The two models are presented and discussed in the following sections.
It 1is also clear from the preceding considerations that the interest of
this quasi three-dimensional approach 1lies mainly in the field of
bounded or internal flows. Therefore we will present this approach in

view of its original development in the field of turbomachinery and
channel flows.



1.1. THE QUASI-THREE-DIMENSIONAL REPRESENTATION (Q3D) FOR INTERNAL FLOWS

C.H. WU'S STREAMSURFACE METHOD Wu (1952), Wu (1976)

The streamsurface method described in this section has been introduced
by C.H. Wu (1952) in order to approximate the internal flow in a

turbomachinery blade passage.

We will consider an arbitrary channel bounded by an inlet and an outlet
surface, for instance a duct or the passage between two blades in a
turbomachine, or the part of a river between two cross sections. A
typical configuration is represented schematically in figure 1.1.1. An
arbitrary curvilinear coordinate system £', €2, £ (or &, n, ) is shown
with &' taken approximately in the mainstream direction and £2, §°
defining roughly transverse directions. The inlet and outlet sections
may be defined by constant g! surfaces. A typical representation for a
turbomachine passage is shown in figure 1.1.2.

In this figure the direction of the axis of rotation of the machine z
may be identified with £!, while the cylindrical coordinates 6 and r are
respectively to be considered as £? and £° coordinates.

Representative streamsurfaces, such as the S, or S, surfaces in the

above figures are obtained by following the paths of the fluid particles
lying along selected lines in the inlet section. For instance, the
fluid particles along the line A,B, of figure 1.1.1 will generate a ¢’

type of surface, or S, surface, and the particles along A,;B, will

generate a £? type of surface (S, surface)

More generally, the considered surface S 1is described by a time
dependent equation

Se"s B E%; =0 @

obtained by following the paths of the fluid particles emanating from an
initial 1line. In a general time dependent flow, S will not be a strict
streamsurface, in the sense of the velocity vector being normal to the
surface. This will however be the case when the flow is steady.

The surface (1.1.1) can be written explicitly in terms of the reference
coordinate £*® as follows,

g = EP(E', £%, ©) (1.1.2)

where the direction §* can be visualized as being roughly in the
direction of the normal to S, and where £! and £? are coordinates
defining the surfaces. In the following, we will restrict ourselves to
time independent surfaces ; since S is then a streamsurface, one has at

o
each point of the surface S, with n being defined as normal to S

> > >
— =v.VS = v.n =0 (13D



for 3 defined by

(1.1.4)

S ¢
]

<N
wn

Two possibilities are open in order to describe the family of surfaces
with respect to the arbitrary curvilinear system of coordinates, figure
TaileBi

1) The surface S does not contain the £! and £2 lines and is situated

arbitrarily with respect to the local coordinate system Ea, (a=1,2,3).

In this case, the surface can be represented by equation (1.1.2) and the

normal to the surface is proportional to the vector 3, defined by its
covariant components na(-3153, -928%, 1). Indeed, from equation (1.1.4)

wiieh & = €° = g¥Ce, BH),

[+ %]
Caat
™

"_____"1_85’ +,
n = (==7).¢ 557—).6 [

(4R 2

} (1.1.5)

[+%]
sl

+> »> +>
where €', €2, €® are the contravariant base vectors of the coordinate

system. Note that the components of 3 as defined by equation (1.1.5)
are not projected along unit vectors, since the base vectors are not of
unit 1length, For 1instance, 1in an orthogonal curvilinear system with
metric coefficients h,, h,, h,, the length of the contravariant basis

EY
vector ea is equal to 1/ha‘

7t
Hence, one would have, with ea denoting the unit base vectors

o '_1_33"1__1_353"2
f h,a_g“re h, 9e2 & 7

I

e =n &% (1.1.6)
3 [0

=3

>
defining hereby components n, as the projections of the normal n along

*a
the unit vectors e .

>
It is to be remembered that the covariant base vectors ea are tangent to
>
the Ea-coordinate lines, while the contravariant base vectors ea are
normal to the surface £a= constant. These two sets of base vectors are
aligned in the same directions when the coordinate system is orthogonal.

11) The surface S is defined by the coordinate lines &' and £?; that
is, S 1is a g® = constant surface, and the surface S contains the lines
E! = constant and £? = constant. In this case, it is seen from equation

(1.1.5) that R-E’ and if the coordinate system is orthogonal, the unit

> >
vector along the normal direction is given by In- h;.n .



1.1.1. Streamsurface variations

With the general representation of S by equation (G -0 the

(covariant) components of the normal vector ;, are given by

3
gg, = 3,£* = - n, @ o)
and
3
%%7 = Pl = =y (1.1.8)

with ny;= 1.

This allows us to define the variations of any scalar flow quantity
along the streamsurfaces S, as functions of E! and £*, by the following
relations, where the overbars indicate variations along the surface,

(1.1.9a)

E U A
Lt — 3!t 9 3,
or in condensed notation

a] = a] + (8153).83 > 81 - n, . 83 (1.1.9b)

Similarly

(1.1.10a)

@
o
N

or in condensed notation

-32 = 9, + (9,£%).09, = 9, - N, . 9, (1.1.10b)

Obviously, the variations 53 with respect to &° along the surface are

identically equal to zero, for arbitrary functions g

(1.1.11)

@l

§-G,8=0

b

Equations (1.1.9) to (1.1.11) can be grouped in the form

g = 3,8 - n, . 338 a=1,2,3 (1.1.12)

Qa a




or in vector notation

=Y
[ g = § g - ; . 938 (1.1.13)

for any scalar quantity g.

In the particular choice of coordinates where the surface S is the -(g!,
£2) surface, that is a surface £°® = constant, case ii above, the
variations 5, and 52 are identical to the ordinary partial derivatives
9, and 9,, since the components n, and n, of the normal vector are zero
according to equation (1.1.5).

EY
The gradient with overbar Vg is the projection of the three-dimensional

operator 33 on the surface S. This can be seen from the definition of
the gradient of a scalar in curvilinear coordinates, when the
coordinates £' and £? are in the surface S ; case ii. With the index Y
ranging from one to two, one has

_ *q "Y "3 a = 1,2,3
§g =g .aag € '3Y8 + €’.9,8 Y = 1.2 (1.1.14)
> +
Since in this case €® = n, this equation 1is identical to equation
(1.1.13) with the definition
2 Y (1.1.15)
- >
Vg = ¢ . 8Yg Y =1,2 Ao 5
when the €' and £2 lines are in the surface S.
Note that equation (1.1.13) remains valid for any system of coordinates.

This approach can be applied to obtain the streamsurface variations for

a vector quantity F. from the definition of the divergence of a vector
in curvilinear coordinates, one has

R P PP I
a Y
(1.1.16)
+>Y > > >
= g .aYF + n.d,F

If €' and £ are orthogonal coordinates in the streamsurface S, the
first term can be worked out explicitely as follows,
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h,h,

[5Y(Fthh2) + F*3,(h,h,)]

+ >
= il n.F
aY(F h,h,) + ETE: d5(h,h,)

The first term is the two dimensional form of the divergence operator,

while the second term represents a contribution to the "streamsurface"
-+

divergence operator 6.?, arising from the deformation of the surface in

the third direction.

+» +> >
This contribution vanishes when the vector F lies in the surface (F.n=0)
or when the streamsurface is independent of the third coordinate £°.

In both these cases the flow can be considered as two-dimensional,

With the definition (1.1.17), equation (1.1.13) can be generalized to
vector quantities as

(1:1,18)
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There are various ways to obtain the flow equations considered along the
streamsurface S. One way can be termed as an "algebraic method" and was
originally followed by Wu (1952) with cylindrical coordinates, and
further extended to formulations in arbitrary, curvilinear coordinate
systems by Wu (1976).

This approach consists in introducing directly the streamsurface
= = a

derivatives 9, and 9. in all the equations of motion written in the §

coordinate system in place of the ordinary derivatives 93, and 9.,

obtaining in this way two dimensional equations where all flow variables
are considered as functions of £' and £&? along the selected
streamsurface.

The derivatives of the flow variables with respect to £*® appearing in
the obtained "streamsurface" equations, are considered as known
quantities. This is also the case for the geometry of the streamsurface

S, which has to be given through the knowledge of the normals n*in each
point. Since the flow surface will only be known once the whole flow
field has been obtained, the present decomposition of the three
dimensional flow field is clearly an iterative procedure.




In order to obtain the necessary information about the derivatives of
the flow variables in the third direction £*®, the two dimensional flows
have 'to be solved along all the surfaces of the same family ¢£° =
ECEE B2 This corresponds to the different surfaces of the type
A;B,C,D, of figure 1.1.1 or to the different surfaces S, on figure

Hictlizi2s

On the other hand, the information which is necessary in order to define
the shape of these streamsurfaces can only be obtained through the
determination of the flow components along the streamsurfaces of another
family, such as the surfaces of the type A,B,C,D, on figure 1.1.1, or

the S, family of figure 1.1.2, when the first family is taken to be S,

surfaces.

Therefore, for time independent flows, the complete three dimensional
flow field will be reconstructed through the iterative solution of the
two dimensional flows on two families of intersecting streamsurfaces.

In the following we will follow an approach which differs from the
"algebraic" method, in order to derive the two dimensional
"streamsurface”" equations. We will express directly the conservation
laws on a finite volume delimited by two neighbouring streamsurfaces,
forming a streamsheet of thickness b. This will lead to a formulation
which is written in vector form, with gradient operators along the
>

surface, such as the V operator of equation (1.1.17). The obtained
formulation will therefore be valid in any system of coordinates and the
explicit, algebraic form of the flow equations can be obtained by
expressing the gradient operators in function of the selected coordinate
system.

1.1.2. Streamsurface Formulation of the Mass Conservation Equation

Referring to figure 1.1.4, we consider the domain enclosed between two
streamsurfaces, forming a streamsheet of thickness B. A reference
streamsurface 1is considered as formed by the mid-points of the
streamsheet and the obtained differential equations are referred to this
surface. In order to define the streamsurfaces, a curvilinear
coordinate system 1is introduced with the direction £? representing the
coordinate which is to be eliminated from the flow equations. The
streamsurface will be assumed to contain the &' and £2? coordinates and
is therefore defined as a £* = constant surface. We will select £' and
£E? to form an orthogonal system in the streamsurface with metric
coefficients h; and h,.

> -+
The unit vectors along the Ea axes are defined by eu related to the €q?

if the coordinate system is orthogonal, by

> 1 -» 0 *q no summation on a
e = —¢ =h € = ¢
a hu a a o= ;2,3
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The normal vector n is equal to e according to equation (1.1.5). The
physical streamsheet thickness in the direction of the coordinate §*, is

measured by B,

The thickness B is also written as B = bh,, where h,; 1is the metric
coefficient associated to £?, that is the elementary length dl, along
this axis is dl,=h,dE®. The quantity b is then a thickness measured in
units of the variable £’. For instance, if £'=8 the angular variable in
cylindrical coordinates, then b is an angular thickness and §-br where r

is the local radial coordinate.

The volume dt formed by variations dE', dE? and dE® along the three

Ea-axes, is measured by the determinant of the inverse jacobian matrix
of the transformation from a cartesian coordinate system to the

£*-system, 1/J. That is dt = % dg'dE*dE® and when the E-system is
orthogonal, 1/J = h,h,h,.

Therefore, the elementary volume dQ formed with the length elements dl,=
h,dg', dl,= h,dE? on the surface, and b in the direction £*, see figure
1.1.4, is defined by

an = 8 dElde? (1.1.19)

If the metric coefficients h, and h, are introduced, we can define the

streamsheet thickness B, measured in the direction normal to the
surface, by

= Bh,h, (1.1.20)

oo

When the coordinate system is orthogonal, B-§-bh,, but in general the

ratio B/b is equal to the ratio of the elementary distance dn along the
normal to the surface, and the variation dt® along the £* direction.
That is

B _d
: - E%T (1.1.21)

The general form of a scalar conservation law for a quantity u, is given
by

- 11 =




%E I pudn + § F.a8 - 0 (1.1.22)
S

Q

>
For instance for the mass oconservation law, u=1 and F=pv,

This integral formulation is applied to the infinitesimal volume dfi of
figure 1.1.4, The side faces 1 and 2, formed by the £* and ¢’
directions have the surface elements

dit.e¢! (1.1.23)

2(h) r : N
If the coordinate system is orthogonal dS° ‘=Bh,df*.e'=Bh,h,d£*.e', The

balance of fluxes for faces | and 2 is given by

.03 & (Frorg et - (F'b/J dE?)
£

142

l+d€l €l

(1.1,24)

o1 4

(bF'/J) dg'dg?
(Bh,h,F!)dg'dE?

<*
where F' 1s the projection of the flux vector on the base vector ¢!,

Fl o« B 21 (1.:1,.28)

and the overbar on the partial derivative indicates a derivative along

the streamsurface, This implies that with another system of
coordinates, whereby the £', £E? axes are not In the surface, the
derivatives will have to be evaluated by relations (1.1.12). A similar

contribution 1is obtalned for the balance of fluxes through the faces 3
and 4, with

FY

ad(?) - —%— dEd.e? (1.1.26)

leading to

= WD) s
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[ F.d§( e (F?b/J de‘)£z+dEz - (F%b/Jd de‘)g2
3+Y
= W (F2b/J)dE dE? (1.1.27)
3—- 2 1 2
- 3% (Bh,h,F2)dgldg
with
(1.1.28)

F2 = F.e?
: "(2) > -+
If the coordinate system is orthogonal dS ‘= Bh,;dg'.e?= Bh,h.dg!.e?.

The balance of fluxes for the remaining faces 5 and 6, with surface
element

3
dg’dg? = 2 hihadgdg?. o)

m$

3
dg( ) = hlhzdﬁldﬁz.;’ =

=

is obtained as follows,

j B a2

5+6

= (fshlhzdﬁld£2)£:+ = (fshxhzdﬁldﬁz)gg

b

(7:1.30)

since, from equation (1.1.29)
-
1

n

6% = F.o¥ = I,
(1.1.31)
++§ !?
(F.n) 5 F 5

Grouping all the terms, one obtains after dividing by dg'dg?, the
conservation law for the streamsheet of thickness B

)

(puBh,h,) + %ET (Bh,h,F!) + R (Bn,h,F2?) = -b %ET (F. (1:9:32)

In the 1left hand side one recognizes the expression of the two
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dimensional divergence operator in the coordinates €' and £? along the
surface. The conservation equation becomes, for time independent
surfaces, applying the definition (1.1.17)

3 S 2 3 (1.1.33)
= (puB) + ¥ (BF) = -b 3, (F.7)

where the overbar on the gradient operator indicates a "streamsurface "
derivative.

The right hand side term is a reminder of the fact that the present
description 1is not strictly two dimensional, but describes a selective
sheet out of a general three dimensional flow.

The condition for the considered surface to be a streamsurface is, from

+ >

equation (1.1.3), v.n=0. Consequently, the right hand side of equation
(1.1.33) vanishes for the mass conservation equation (since EspJ) which
reduces to the following form

%E(pB) « 7 (pB¥) =0 (1.1.34)

Considering now equation (1.1.34) as a starting point, one can apply
this equation to any system of coordinates, with the definitions
(1.1.13) and (1.1.17) of the streamsurface derivatives.

1.1.3. Definition of the Streamsheet Thickness

The above formulation of the continuity equation along the streamsurface
has to be identical locally to the full three dimensional form of the
mass conservation equation. This condition provides a relation between
the streamsheet thickness B and the three dimensional properties of the
flow.

Indeed, applying the relations (1.1.13) and (1.1.17) to the general
three dimensional form of the continuity equation,

ap o
. ¥ (pv) = 0 (1.1.35)
gives
<>
%% + T(pv) = -p;.a,; ielEst)

Equation (1.1.36) should be identical to the streamsheet form (1.1.34)
of the mass conservation law. Identifying these two equations, leads to
a relation defining the streamsheet thickness as a function of the three
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dimensionality of the flow, namely

> (1.1.37)

For time independent flows, the time derivative vanishes and the above
relation becomes

2 34 (1.1.38)

>
+ = +> +>
(v.V)B = n.3,v = -v.3,n

If the three dimensional flow field 1is known and the streamsurface

normals ; defined, equation (1.1.38) will determine the evolution of B
along the selected streamsurface. Note that the operator on the left
hand side is the convective derivative in the streamsurface. This
equation expresses that the variation of the streamsheet thickness is
defined by the variation of the velocity field in the third direc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>